綜述分析 | 污水處理過程N2O排放:過程機制與控制策略
編者按:
污水處理生物脫氮過程中氧化亞氮(N2O)作為直接碳排放源,其大氣升溫效應(yīng)較CO2高出265倍。N2O產(chǎn)生源于硝化與反硝化過程,主要涉及亞硝化(AOB)及其同步反硝化、常規(guī)異養(yǎng)反硝化(HDN)、同步異養(yǎng)硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途徑,以及硝化過程中間產(chǎn)物NH2OH與NOH之非生物化學(xué)途徑。常規(guī)硝化與反硝化(AOB+HDN)途徑在正常運行工況下N2O排放量并不是很大,約只占進水TN負(fù)荷的1.3%;即使是HN-AD與COMAMMOX代謝過程,兩者N2O產(chǎn)生量也不足TN負(fù)荷的0.5%。不可忽視的是AOB亞硝化及其同步反硝化,它們已被確認(rèn)為是污水處理生物脫氮過程中N2O排放的首要途徑;AOB過程中間產(chǎn)物(NH2OH與NOH)非生物化學(xué)過程以及AOB反硝化生物過程(主途徑)共同導(dǎo)致的N2O排放量可高達(dá)TN負(fù)荷的13.3%,主要是因為硝化過程溶解氧(DO)受限引起NO2-積累所誘發(fā)的AOB反硝化過程。污水處理生物脫氮過程中為防止N2O產(chǎn)生,應(yīng)著力促進HDN反硝化進行完全和避免AOB反硝化過程。為此,運行過程中應(yīng)控制曝氣池中DO處于正常水平(~2 mg·L-1),并盡可能延長污泥齡(SRT→20 d),以避免AOB亞硝化積累NO2-并誘發(fā)AOB反硝化出現(xiàn);同時,應(yīng)及時補充進水碳源,以促進HDN反硝化進行完全至終點——N2。本論文綜述分析了生物脫氮過程中涉及N2O產(chǎn)生的所有機制,并根據(jù)過程機理討論了對其運行控制的策略。文章將于2023年2月第2期《環(huán)境科學(xué)》上發(fā)表。
文章亮點
1 污水處理脫氮過程N2O產(chǎn)生的主要途徑為:硝化與反硝化、AOB同步亞硝化與反硝化和全程氨氧化(COMAMMOX)途徑;其中,AOB亞硝化及其同步反硝化為污水處理生物脫氮過程中N2O排放的首要途徑。
2 繪制出各種N2O產(chǎn)生的途徑的路線圖并總結(jié)了相應(yīng)的產(chǎn)率系數(shù)。
3 基于生物脫氮過程中涉及N2O產(chǎn)生的所有機制,提出相應(yīng)的運行控制策略。
01 污水脫氮過程中N2O產(chǎn)生途徑與機制
好氧硝化(AOB和NOB)與常規(guī)異養(yǎng)反硝化(HDN)、同步異養(yǎng)硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)代謝過程產(chǎn)生N2O機制均已被探明,是基于它們的硝化/短程硝化與反硝化途徑。因此,可以將目前已經(jīng)明晰、且作用明顯的污水處理脫氮過程涉及N2O產(chǎn)生的主要生物過程和次要非生物過程匯總于圖1,并對各個過程轉(zhuǎn)化路徑機制以及N2O產(chǎn)生貢獻(xiàn)率進行分析和討論。
圖1 污水處理脫氮過程N2O產(chǎn)生途徑(來自原文)
1.1 硝化與反硝化途徑
1.1.1 硝化途徑
1)AOB短程硝化
AOB將NH4+氧化為NO2-的生物過程中主要經(jīng)過羥胺/NH2OH(由氨單加氧酶/AMO催化)與次要途徑硝?;?NOH(由羥胺氧化還原酶/HAO催化)兩個中間產(chǎn)物,如圖1(a)所示。NH2OH或NOH可經(jīng)生物途徑①或非生物化學(xué)途徑②轉(zhuǎn)化至N2O。
①在生物途徑中[圖1(a)中紅色線條],存在由NH2OH直接轉(zhuǎn)化為N2O的兩個生物過程。一個是在無氧條件下,cyt P460(HAO的c型血紅素)將NH2OH直接氧化為N2O,但此過程在好氧情況下顯然不能發(fā)生。另一個是NH2OH向NO過渡的生物氧化過程(由HAO催化),也是N2O潛在來源;在這一NH2OH生物氧化過程中,AOB能釋放兩個細(xì)胞色素c分子,參與AOB電子傳遞,其中,細(xì)胞色素之一的c554分子可以作為一種NO還原酶/Nor,把由HAO催化產(chǎn)生的NO于菌體外還原為N2O。大多數(shù)AOB中都能檢測到Nor基因組。此外,經(jīng)NH2OH生物氧化產(chǎn)生的NO也能逆向轉(zhuǎn)化為NO2-(由未知酶/NcyA催化)。
②在非生物化學(xué)途徑下[圖1(a)中黑色虛線條],從NH2OH和NOH化學(xué)轉(zhuǎn)化N2O分別是NH2OH化學(xué)氧化或歧化以及NOH在好氧條件下二次聚合生成次亞硝酸/N2O2H2后再發(fā)生水解反應(yīng)產(chǎn)生N2O。
2)HN-AD與COMAMMOX硝化
HN-AD菌氧化NH4+、NH2OH或有機氮化合物時并不從該過程中獲得能量,而是利用有機碳源和有氧呼吸來產(chǎn)生能量。HN-AD菌能進行完全硝化,將NH4+逐步轉(zhuǎn)化為NO3-,但分別需要AMO、HAO和硝酸鹽氧化還原酶/Nxr等酶加以輔助[圖1(b)]。
COMAMMOX是硝化螺旋體菌屬的一個從屬菌屬,能將NH4+逐步氧化至NO3-,進行完全NH4+氧化(一步到位)。COMAMMOX攜帶AOB與NOB同源基因組,能同步進行AOB的NH4+氧化與NOB的NO2-氧化。COMAMMOX在AMO酶催化作用下,先將NH4+氧化為NH2OH,之后NH2OH依次被氧化為NOH和NO2-,該過程由HAO酶催化完成,最終NO2-在Nxr酶催化作用下,轉(zhuǎn)化為NO3-[圖1(c)]。迄今為止,所報道的COMAMMOX基因組中缺乏編碼Nor基因及細(xì)胞色素c蛋白,無法將由硝酸鹽還原酶/Nar和亞硝酸鹽還原酶/Nir生物還原而成的NO轉(zhuǎn)化為N2O。
1.1.2 反硝化途徑
1)HDN與HN-AD反硝化
HDN是以有機物(COD)作為電子供體,在不同氮氧化物還原酶催化作用下將NO3-依次還原為N2的過程,如圖1(a)中紫色線條所示。參與催化HDN反硝化過程的酶包括Nar、Nir、Nor和N2O還原酶/Nos。Nos最大還原速率大約是Nar或Nir還原速率的4倍,這表明在缺氧或厭氧條件下,N2O可以被徹底還原,并不會發(fā)生N2O積累。但在污水生物脫氮實際運行過程中一些因素會抑制Nos活性,如,缺氧環(huán)境中存在DO、低pH、高NO2-濃度和C/N等因素,導(dǎo)致N2O在反硝化過程中發(fā)生暫時性積累。HDN中除了反硝化脫氮菌能產(chǎn)生N2O外,反硝化除磷(DPAO)菌,亦能產(chǎn)生N2O。DPAO過程中所利用的細(xì)胞貯存物質(zhì)PHA和NO2-積累是缺氧條件下DPAO過程產(chǎn)生N2O之關(guān)鍵因素。最新研究發(fā)現(xiàn),ANAMMOX過程會產(chǎn)生N2O,但顆粒污泥內(nèi)部HDN反硝化作用最終被認(rèn)定為ANAMMOX反應(yīng)器(即,顆粒污泥)排放N2O的根本原因。
HN-AD菌亦能同步攝取O2和NO3-,在Nar、Nir、Nor和Nos等酶催化作用下,進行好氧反硝化,將NO3-逐步還原為N2或N2O [圖1(b)]。
1.2 AOB同步亞硝化與反硝化途徑
AOB除了亞硝化途徑外,亦可通過反硝化途徑產(chǎn)生N2O。有研究指出,硝化過程中AOB反硝化作用也是活性污泥系統(tǒng)產(chǎn)生N2O不可忽視的途徑,且被認(rèn)為是污水處理系統(tǒng)產(chǎn)生N2O的主要來源。AOB可以在低DO或高NO2-濃度情況下,將NO2-逐步還原為N2O,這個過程被稱為AOB反硝化作用。低DO濃度會對NOB產(chǎn)生明顯抑制作用,使NO2-進一步氧化受阻,造成NO2-積累;此時,AOB會分泌一系列Nir、異構(gòu)亞硝酸鹽還原酶/Ntr和Nor等酶,而Nor酶在有氧條件下不會受到抑制,且AOB基因組中沒有發(fā)現(xiàn)編碼Nos的基因,所以,AOB反硝化終產(chǎn)物不是N2而是N2O[圖1(d)]。AOB在Ntr酶催化作用下可直接[圖1(d)中左側(cè)水平粗紅色線條]將NO2-還原形成N2O,亦可在反硝化過程[圖1(d)中右側(cè)水平粗紅色線條]經(jīng)NO而形成N2O。這兩個生物途徑構(gòu)成了AOB產(chǎn)生N2O的主要過程,且此兩途徑在DO<1.5 mg·L-1便可以發(fā)生,至DO<0.2 mg·L-1時作用最為明顯。
1.3 非生物化學(xué)路徑
除生物主要途徑外,非生物次要化學(xué)途徑亦可產(chǎn)生少量N2O;NH2OH、NOH和HNO2等是在污水或自然水體中化學(xué)產(chǎn)生N2O的主要前體物質(zhì)。NH2OH除能通過自身歧化反應(yīng)產(chǎn)生N2O外,亦可與O2和HNO2反應(yīng)產(chǎn)生N2O。此外,在相關(guān)環(huán)境條件下,氧化還原活性金屬(鐵和錳)、有機物(腐殖酸和黃腐酸)和氮循環(huán)中間體之間的化學(xué)反應(yīng)也可能產(chǎn)生N2O。
污水處理脫氮過程中N2O排放主要源于AOB同步亞硝化與反硝化途徑,該途徑中AOB反硝化與其亞硝化過程產(chǎn)生的非生物化學(xué)途徑合在一起可使N2O產(chǎn)生量達(dá)TN負(fù)荷的13.3%。其次,硝化與反硝化途徑經(jīng)AOB亞硝化過程中間產(chǎn)物NH2OH與NOH非生物化學(xué)途徑和HDN反硝化不完全所產(chǎn)生的N2O量并不高,占TN負(fù)荷的1.3%~3.5%。此外,硝化與反硝化途徑中HN-AD與COMAMMOX純菌株培養(yǎng)過程中N2O產(chǎn)量分別為TN負(fù)荷的5.6%與0.05%~0.5%。污水處理脫氮過程中各種生物途徑及其中間產(chǎn)物非生物化學(xué)途徑N2O產(chǎn)率系數(shù)總結(jié)于表1。
02 污水脫氮過程中N2O減排策略
2.1 硝化與反硝化途徑
2.1.1 常規(guī)硝化與反硝化
硝化(AOB+NOB)與反硝化(HND)途徑中AOB生物與非生物途徑只產(chǎn)生少量N2O,且NOB硝化過程并不產(chǎn)生N2O,所以,硝化過程只要保持DO≥2 mg·L-1來保證AOB和NOB硝化順序完成至NO3-,便可在很大程度上避免硝化過程N2O產(chǎn)生。對HDN反硝化而言,關(guān)鍵是要保證能夠獲得足夠的碳源,因為當(dāng)進水中碳源不足時,HDN反硝化便會受阻,從而導(dǎo)致NO3-反硝化不完全而止步于N2O。但是,進水中碳源缺乏是我國污水非常普遍的情況,這就需要通過外加碳源方式去促進完全反硝化作用;結(jié)果一舉兩得,同時可以避免N2O積累現(xiàn)象發(fā)生。此外,運行實踐中好氧池DO也不能維持過高水平,只要硝化完全,DO則不必太高,一般控制在2 mg·L-1即可。否則,曝氣池過高DO會隨內(nèi)回流進入缺氧池(如,A2/O工藝),從而抑制反硝化,出現(xiàn)N2O積累而溢出現(xiàn)象。
2.1.2 HN-AD好氧硝化與反硝化
HN-AD菌利用有機碳源和有氧呼吸產(chǎn)生能量,進而完成同步異養(yǎng)硝化-好氧反硝化過程。有研究發(fā)現(xiàn),在混合菌株培養(yǎng)實驗中HN-AD菌在C/N=10的條件下,異養(yǎng)硝化-好氧反硝化才能有效進行。然而,進水中缺乏碳源是我國污水非常普遍的情況,且部分碳源屬于難生物降解物質(zhì),可生物降解碳氮(COD/N)比一般<5。這就意味著我國污水處理脫氮過程中,HN-AD途徑產(chǎn)生N2O可能性很小。而目前研究證實的一些HN-AD菌只有在DO≥3 mg·L-1時才能發(fā)生有效異養(yǎng)硝化-好氧反硝化,這從另一角度再次說明,實際污水處理過程,HN-AD產(chǎn)生N2O的可能微乎其微。
2.1.3 COMAMMOX硝化
COMAMMOX菌的微生物氧化酶通常在極低DO濃度下表達(dá),并對DO有較高的親和力。COMAMMOX在低DO條件下可以成為硝化過程優(yōu)勢菌屬,但隨DO濃度增加,AOB活性逐漸增加,COMAMMOX則會失去競爭力。污水處理過程中,DO控制在2 mg·L-1左右,可有效避免COMAMMOX硝化過程產(chǎn)生N2O。
2.2 AOB同步亞硝化與反硝化
工藝運行環(huán)境中發(fā)生硝化作用的好氧池一般DO均控制為≥2 mg·L-1,少有出現(xiàn)DO過低(<1.5 mg·L-1)的現(xiàn)象,除非曝氣設(shè)備出現(xiàn)異常。也就是說,AOB反硝化現(xiàn)象只有在運行異常情況下方可能發(fā)生,但其產(chǎn)生N2O的作用并不能因此而掉以輕心。當(dāng)?shù)虳O<1.5 mg·L-1時,會導(dǎo)致AOB利用NO2-作為電子受體將其反硝化產(chǎn)生終產(chǎn)物N2O。同時,低DO容易導(dǎo)致NOB被抑制,造成NO2-積累。此外,通過控制系統(tǒng)污泥齡(SRT)有效持留NOB亦可降低N2O排放量。若能控制系統(tǒng)保持長SRT(約為 20 d),則有利于比增長速率較低(0.801 d-1)的NOB生長,可降低系統(tǒng)中NO2-濃度,最終降低系統(tǒng)N2O產(chǎn)量。因此,硝化過程應(yīng)保持DO在2 mg·L-1左右,控制系統(tǒng)SRT盡可能要長(如,20 d,同步生物除磷時例外),避免因NOB受DO、SRT抑制而積累NO2-,從而導(dǎo)致AOB反硝化發(fā)生產(chǎn)生N2O。
2.3 其它控制措施
2.3.1 加入銅元素
傳統(tǒng)硝化與反硝化途徑HDN反硝化過程的Nos酶是含銅酶,其活性中心具有催化位點CuZ,含有銅離子,因此,加入銅元素則有利于加強Nos酶活性。銅元素是Nos酶進行生物合成的必需物質(zhì),并且它的含量能夠影響N2O產(chǎn)量。然而,在實際污水處理系統(tǒng)中,銅元素的作用及其對HDN反硝化過程中N2O產(chǎn)量影響尚未見報道。
2.3.2 pH與溫度
此外,污水處理過程中,脫氮微生物相關(guān)酶活性與pH密切相關(guān),且影響污水中N元素存在形態(tài),從而會影響污水處理廠N2O產(chǎn)量。硝化過程中AOB與NOB代謝過程適宜pH值分別為7.0~8.5和6.5~7.5。因此,當(dāng)pH>8.5或<6.5時,NOB代謝活性較AOB更易受pH抑制,致NO2-積累,進而導(dǎo)致N2O產(chǎn)生。因此,污水處理過程中,避免pH過高或過低環(huán)境可有效降低N2O排放。
溫度主要通過化學(xué)平衡、酶活性和溶解度來影響N2O產(chǎn)生。首先,溫度擾動會導(dǎo)致NH4+和NO2-氧化反應(yīng)不平衡。其次,溫度為25℃時,Nos酶活性可能增強,從而降低N2O積累速率??傊?,夏季時污水處理可實現(xiàn)N2O產(chǎn)生最小化。
03 結(jié)語
污水處理生物脫氮過程N2O釋放于硝化與反硝化過程,主要與AOB及其同步反硝化、HDN、HN-AD和COMAMMOX等生物途徑,以及硝化過程中間產(chǎn)物NH2OH與NOH之非生物化學(xué)途徑有關(guān)。常規(guī)硝化與反硝化(AOB+HDN)途徑在正常運行工況下N2O排放量并不是很大,約只占進水TN負(fù)荷的1.3%;即使是HN-AD與COMAMMOX代謝過程,兩者N2O產(chǎn)生量也不足TN負(fù)荷得0.5%。而AOB亞硝化(非生物途徑)及其同步反硝化(生物途徑,主途徑)過程是污水處理生物脫氮過程中N2O排放的首要途徑,N2O排放量可高達(dá)TN負(fù)荷的13.3%。原因是硝化過程DO受限引起NO2-積累所誘發(fā)的AOB反硝化。
為此,污水處理過程中應(yīng)盡量避免低DO、NO2-積累和碳源不足等現(xiàn)象。運行實踐中,可通過以下3種措施控制N2O排放:①好氧池DO應(yīng)控制在2 mg·L-1左右;②如果不涉及生物除磷,SRT盡可能要延長至≥20 d;③進水碳源不足時應(yīng)及時補充外加碳源。這些技術(shù)措施可有效防范N2O于未然。
聲明:素材來源于網(wǎng)絡(luò)如有侵權(quán)聯(lián)系刪除。